Anomaly Detection Through Behavior Signatures

10 Aug 2010

Electrical and Computer Engineering Dept

Air Force Institute of Technology

Sponsor: AFRL / 711 HPW/RHXB

Overview

- Parent Project Objectives
- Relation to Resilient Controls
- Large Scale Anomaly Detection

Parent Project: AFRL City Beat

Hypotheses:

- ➤ Cities have a pattern of life that can be studied and modeled
- ➤ Anomalous behaviors have transactional signatures
- > Behavior models can be used for high fidelity simulations
 Objective:
- Develop an automated system with direct and indirect sensing to aid a human in anticipating, discovering and tracking nefarious transactions

Core Team Members

- John Duselis, PhD AFRL / RHXB
- Rik Warren, PhD AFRL / RHXB
- Jeff Graley, M.S. AFRL / RHXB
- Lt Col Brett Borghetti AFIT / ENG
- Prof. James W. Davis Ohio State Univ.
- Prof. Amit Sheth Wright State Univ.

Layers of Sensors & Data Types

- Video cameras in public places
- Publically available web-based social networking data

Interactive Visualization and Camera Control

Matt Nedrich and Prof. James W. Davis Ohio State University

- Fully geo-registered framework
 - Live pano ortho registration mapping
- Multiple control layers for efficient camera control
- Allows operators to concentrate on environment rather than cameras
- Embedded GIS information (e.g., floor plans, class schedules)
- Upgrade of camera network

Behavior Analysis

Kevin Streib and Prof. James W. Davis Ohio State University

Objective: Model the movement patterns of pedestrians and detect anomalies from learned behavioral trends.

Research Tasks:

- Real-time multi-object tracking algorithm
- Accumulate tracks over time (24/7)
- Search for "Patterns of Life" Multiple Instance Learning
- Investigate influence of contextual factors
 - Day/Night, weather, scene density

Real-time Multi-object Tracking

Accumulated Tracks

Typical scene

Morning (8 am)

Accumulated Tracks

Evening (8 pm)

Example Scenarios

Drop Off

- -Drop off of person A and big bag
- -Phone call made to person B
- -Loitering of person A

Bag Exchange

- -Meeting
- -Set down both bags
- -Check for contents
- -Walk off briskly

Tracking of Bag

- Camera follows person B
- -Person B walks towards bus stop

Sensor Handoff

- -Use bus system routes and schedule
- -Follow bus, check for dismount using bus stop surveillance

Experimentation Plans

≻ Variety of alerts

- Unusual groupings
- Exchanges
- Unusual velocities/loitering
- Off the path

≻Confuser Events

- Buses group for orientation
- Textbook Hand-off
- Truck on sidewalk for construction

Visual

- Maps (Roads, Borders, Landforms)
- Labels (Buildings, Landmarks)
- Motion (Identify People, Vehicles)

Descriptive

- Building Information
- Schedule of Events
- City Facts

Patterns

- Transactional Trends
- Transportation Trends
- Socio-cultural

Alerts

- Entering and Leaving Buildings
- Groupings and Dispersions
- Unusual Velocities and Loitering

>Prioritize and address alerts

- >Access indirect layers & visualization (schedules, maps, etc)
- ➤ Ability to view multiple windows & multiple cameras simultaneously
- >Tracking capabilities
- >Histograms show patterns

Relationship to Resilient Controls

- Goal: Increase situation awareness and security through video-based surveillance
- Assumption: Ever-increasing video availability, but human resources limited
- Problem: Too much video for unassisted humans to be fully effective in finding indicators & analyzing events
- Solution: Machine-aided anomaly detection and analysis

Large Scale Anomaly Detection

Lt Col Brett Borghetti Air Force Institute of Technology

(Pattern Recognition / Machine Learning)

Building Patterns of Life Info

- Process Video
- Identify entities & tracks
- Aggregate POL from "normal" paths

Classifiers

Tracking

Supervised

Video / Imagery

Labeled Track-space Data

Unsupervised (Clustering)

Video / Imagery

Track-space Data

Validation with Anomalous Tracks

- Simplest method for initial testing of the classifier
- Hard to Visualize / Analyze the results
- Doesn't evaluate image processing or tracker

Challenges

- Need to validate system behavior
- Difficult / Expensive to coordinate anomalies during live collection
- Can we synthesize anomalous behavior?
 - Alter Image Data
 - Simulate Collection Process

Spiral 2: Image Manipulation

- Alter images prior to tracking (or labeling)
 - Add entities that are behaving anomalously in each image
 - Use MATLAB to automate the process

Original Video / Imagery

Add Anomalies

(Labeled)
Track-space Data

Spiral 3: Simulating Collection

 Recreate normal and add anomalous behavior within a simulated version of area of interest

Collect & process video from simulation's virtual camera

to test end-to-end system

Virtual Battlespace 2
Simulation

Virtual Camera Video

Possible Future Work

- Compare performance of classifier with humans
- Model the human security worker's actions
 - Decision to look for more info in existing data
 - Decision to take control of camera control / collection assets
 - Decision to direct emergency services / forces to anomalies